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In view of structure-borne sound, vibrational power #ow analysis is investigated for
damaged beam structures. In this paper, the damage is modelled as a joint of a local spring.
The damage point transfer matrix and the beam element transfer matrix are deduced, then
the relations of the vibrational power #ow, the position and the characteristic size of the
damage are obtained combined with periodic structure theory. Based on the theoretical
analysis and measurement results, the damage can be diagnosed in the next work.
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1. INTRODUCTION

Any structure composed of a number of identical elements which are connected in a regular
pattern is said to be &&periodic''. For example, periodic beam structure is one of the most
basic structure types to support the shells or fuselage of ships or aircraft. Under fatigue load
and external pulse conditions, the damages may be produced as a result of the #aws or
manufacturing defects in the structures. So dangers are inherent in the life of the structures.
For this reason, methods for making early detection and location of damages have been the
subject of recent investigation.

Most of the previous researchers on vibration-related damage detection are based on
modal methods. The basis for such methods is that damage produces a decrease in dynamic
sti!ness, this decrease in turn produces decreases in natural frequencies for an undamped
simple beam. This basic premise has produced a number of results using modal analysis, i.e.,
frequency measurement to perform diagnostics [1]. Though modal-based method may have
advantages, modal-based method possesses a number of major disadvantages [2]. First of
all, some of the modal-based method investigations provide a strong argument for including
the geometry of the damage in any diagnostic testing scheme, something which is not easily
done in frequency-based methods. Indeed, mode and frequency characterizations are not so
simple in variable structure systems; there is ample evidence that one should not use modal
methods based on uniform undamped simple beams or plates as is often done in the
engineering literature in addressing damage assessment methodologies. Since material
parameters are most properly considered as spatially dependent quantities with damage
manifested by changes in geometry (and hence in the spatial dependence of these
parameters), it is unlikely that any rigorous theoretical basis for modal-based method for
variable material structures would emerge. But perhaps the most serious objection to
modal-based method resides in the fact that modal-based methods have been shown to be
highly unreliable for estimation of variable material parameters such as damping in
composite material structures.
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The results of previous e!orts in damage detection provide evidence that something is
gained by including the e!ects of geometry and hence modelling the local changes in
modulus. This then raises signi"cant questions as to the validity of using traditional modal
analysis (i.e., measurements of natural frequencies, assuming a uniform model) as the
foundation of a damage detection.

One of the major concerns regarding using modal analysis to diagnose damage is that
damages is a local phenomenon and modal information is a re#ection of the global system
properties. If the damage is located on a nodal point of a certain mode, the corresponding
frequencies would be all the same for all sizes of damage and the same in turn as those for no
damage. The nodal point of a mode shape can be taken as a &&point of in#ection'' at which
the in#uences of damage vanish. Weissenburger's study [3] combined with Sato's result [4]
indicates a possible source of why the previous work contains con#icting statements on the
use of frequency measurements to predict damage. An explanation for the controversy may
be simple, since it depends on where the damage is located, i.e., it depends on the geometry
of the damage. For some types of damage modal analysis may be appropriate while for
other con"gurations it may not be.

In recent years, the structure-borne sound analysis and control of #exible structures and
cabins of marine structures and aeronautical crafts are becoming an important topic. The use
of vibrational power #ow in a problem of this type is very valuable. An attempt to decrease
the radiation or vibration in a structure by reducing only the force or velocity amplitude and
not considering the relative phase angle may not necessarily be successful, but an
improvement may be ensured by decreasing the net vibrational power applied to a structure
[5]. The premise of the e!ort proposed here is that damage of a structure will correspond in
some way to changes, though small, in the structure's mass, damping and sti!ness properties
and so the vibrational power #ow is in#uenced by the changes in propagating waves.
Through the study of vibrational power #ow, the major structure-borne sound source is not
only identi"ed [6], but also the position and size of damage can be diagnosed.

In the view of structure-borne sound, vibrational power #ow analysis is investigated for
damaged beam structures. Damages in a structure cause changes in the physical coe$cients of
mass density, elastic modulus and damping coe$cients. In this paper, the damage is modelled
as a joint of a local spring. The damage point transfer matrix and the beam element transfer
matrix are deduced, then the relations of the vibrational power #ow, the position and the
characteristic size of the damage are obtained combined with periodic structure theory.
Further work will be done to diagnose the damage based on the above analysis.

2. FREE VIBRATION OF EULER}BERNOULI BEAM

The Euler}Bernouli equation of free vibration is

EI
L4w

Lx4
#oS

L2w

Lt2
"0, (1)

where E is Young's modulus, I is the moment of inertia, o is the material density, S is the
area of the cross-section and w is the #exural displacement.

For harmonic motion w"=(x)e*ut, equation (1) can be written as (for brevity, the term
e*ut is ignored in the all following formulas)

d4=

dx4
!j4="0, (2)

where j4"u2oS/EI and u is the angular frequency.
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When introducing state vector <(x), the solution of equation (2) is [7]
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with
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and =
0

, h
0
, M

0
, Q

0
in equation (3) are the transverse de#ection, the slope, the bending

moment and the shear force of the cross-section x"0 respectively. ;(x) is the transfer
matrix of beam element.

3. TRANSFER MATRIX OF PROPAGATION WAVE

A model of periodically simply supported beam is shown in Figure 1. Every element is
in#uenced by its adjacent elements and it can be simpli"ed as a simply supported beam with
two bending moments applied at its ends. The state vector expression of the model is given
in equation (3).

If there is a damage on a beam (shown in Figure 2), its local #exibility for typically edged
damaged will produce additional coupled terms such as bending with longitudinal,
torsional with transverse shear. However, it is shown [8] that if the bending moment is
dominant in the beam, all other coupling terms may be neglected, and hence only the
bending #exibility is considered here.

The beam has a diameter D"2R, and a transverse damage of depth a. The dimensionless
local #exibility of the damage for bending moment in the m direction is obtained as [9]

CM "[nR3E/(1!l2)]C, (6)

where
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Figure 1. (a) In"nitely damaged beam on simply equi-span supports. (b) Mechanical model of element.



Figure 2. (a) A damaged beam in bending moment. (b) The damaged section of the beam.

62 T. Y. LI E¹ A¸.
l is the Poisson ratio and the geometric function F
2
(g/h) is [10].

F
2
(g/h)"1)125#1)4(g/h)#7)33(g/h)2!13)08(g/h)3#14)0(g/h)4. (8)

Assume there is a damage like the above type at x"x
0

in element co-ordinate system
xoy. In the previous discussion, the damage joint has been modelled as a local #exibility
which can essentially be regarded as a bending spring. Because of the requirement of
continuity at the damage joint, the following conditions should be satis"ed [1]:
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where the subscripts r, l express the right and left sections of the damage respectively. The
term CEIh@

l
is the additional slope angle resulting from the bending moment applied to the

equivalent spring of the damage and a prime indicates di!erentiation with respect to x. In
the matrix form these equations become
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or
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), (11)

where R
0
is the transfer matrix of a damage joint. For the beam element with damage shown

in Figure 2, the state vector relating the values at the right end of the element (x"¸) to
those values at the left end are found:

<(¸)"; (¸!x
0
)R

0
; (x

0
)< (0). (12)

4. PERIODIC SOLUTION OF BOUNDARY BENDING MOMENT

The theory of periodic structures has been established by several researchers. Loosely
speaking, it is based on the assumption that harmonic motion at any point in the periodic
element is equal to exp(k) times the motion at corresponding point in the next element,
when the structure vibrates in one of the possible free waves. Here the complex number
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k(k"k
r
#ik

i
) is the propagation constant, which describes the phase change and the decay

rate over the length of the periodic unit. This assumption is perfectly valid for in"nite
systems. According to the properties of periodically simply supported beams, there is only
a value of the propagation constant if adjacent elements are coupled with a parameter. The
formula for the propagation constant is [11]

cos k"!

a
0{0{

a
0{L{

, (13)

where a
ab

(seen in reference [12]) is the receptance which is the harmonic response at point
b due to unit harmonic force at point a.

Assume there is a damage in element BC and is not located at point B or point C. The
bending moment M

L
of point C can be solved from equation (12) if the bending moment of

point B is M
0
. Considering free bending wave motion from A to D, only incident bending

wave exists in the right section of the damage, according to the periodic condition, the
bending moments at support D is M

L
ek . Because of the presence of the damage, the bending

moment at support B contains incident and re#ected waves:

M
0
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, (14)

where M
0P

and M
0R

are the amplitude of incident wave and re#ected wave at support
B respectively. When there is no crack, only incident wave M

0P
exists and it can be obtained

by solving perfect periodic beam. That is to say, if the bending moment at support B is
M

P
for perfect periodic beam, M

0P
"M

P
. It implies that M

0P
is known and only M

0R
is

caused by a crack here.
Based on the periodic condition, the bending moment at support A is

M
A
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e~k#M
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ek, (15)

The slope at support B of the element AB may be found by the receptance method:
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The slopes at the left support B and the right support C of the element BC are,
respectively,
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The slope at support C of the element CD is
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Considering the continuity of slope across the supports B and C yields
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According to linear equation (12), one can assume that (=
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where a
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analytical expressions of h
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complex may be found from equations (14)} (20). In this paper, they are solved with
numerical computation, so a matrix equation can be deduced as follows:
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5. VIBRATIONAL POWER FLOW ANALYSIS

Because only bending moment is coupled at all supports, the transmitted power #ow by
the bending moment M

L
from the right support of the damaged beam element to its

adjacent element CD is

P
C
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2
Re(!iuM

L
h*
L
), (22)

where Re( * ) expresses the real part of a complex value and an asterisk denotes the complex
conjugate.

The transmitted power #ow by the bending moment (M
P
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) is
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Flexural waves cause two internal forces (one associated with bending, the other with
shear) to act in any beam element. For element CD, whose element coordinate system is xoy,
the #exural displacement is

=(x)"a
x0{

M
L
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xL{
M

L
ek. (24)

For harmonic motion, the #exural velocity and angular velocity are, respectively,

wR (x, t)"iu=(x),

(25)

hQ (x, t)"iuL=(x)/Lx,

where a dot denotes L/Lt.
The bending moment and shear force at any point x are, respectively,

M(x)"EIL2=(x)/Lx2, Q(x)"EIL3=(x)/Lx3. (26)

The power #ow P
Q
(x) and P

M
(x) transmitted, respectively, by shear force Q(x) and

bending moment M (x) can be obtained in the form like equation (22), so the total power
#ow transmitted by internal forces is
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It can be proved that P
T
"P

C
for undamped beam structures. For the same reason the

total power #ow transmitted by internal forces Q (x) and M (x) along the beam element AB
in the negative directions equals P

B
.

Based on the above analysis, the transmitted power #ow is a function of position and the
characteristic size of the damage. The power #ow transmitted by internal forces Q(x) and
M(x) can be easily measured with two-position linear accelerometers [13], so the damage
can be diagnosed by comparing the vibrational power #ow of beam structures with and
without a damage.

6. CALCULATIONS AND DISCUSSION

In this paper, assume that the damaged element beam is known, which can simplify the
analysis here and is a case in practical engineering. Further work will be done to solve the
damage detection problem if the damaged element beam is not known previously.

For undamped periodic beam, it is found that there are alternate bands of propagation
and stop of free waves. In stop bands, k"k

r
or k"k

r
!in and then ek is real. So

P
B
"P

C
"0. In propagation bands, the propagation constant is in purely complex and

frequency dependent. The transmitted power #ow can be obtained by substitution of k"ik
i

into equations (22) and (23).
Because the damages are local phenomenon, the periodic condition has not changed. The

propagation bands and the stop bands are the same of those of perfectly periodic beam. The
lower and upper non-dimensional bounding frequencies of the "rst propagation band
are 3)14 and 4)73, respectively, which are identical to the non-dimensional fundamental
natural frequencies of a single beam when its ends are simply supported or fully clamped.
The second non-dimensional bounding frequencies of the second propagation band are 6)28
and 7)85.

The total power P
P

of periodically perfect beam without loss factor is independent of
position, having the same values at the same j¸ and any station [14], and that is the case of
a"0 for damaged beam.

Tables 1 and 2 show the transmitted power #ow ratio in the propagation bands when
a/2R"0)1 and a/2R"0)2 respectively. Calculation results (above tables are just two
samples) show that P

C
/P

B
"1)0 and the total power #ow is less than that of perfect beam at

any case. That is to say the total power P
T

of periodically damaged beam has the same value
at the same j¸ and any point too, though it is dependent of position and depth of the damage.
If the ratio of depth of the damage to the diameter of the beam is small, the power #ow ratio
P
P
/P

C
is also small. It implies that the vibrational power #ow of damaged beam is not sensitive

to small damage. When the depth of the damage is "xed, the total power #ow has mid-point
symmetry to the position of the damage at the same dimensionless frequency j¸. For
example, when j¸"7)0 and a/2R"0)2, the P

P
/P

C
"1)046 for x

0
/¸"0)3 and x

0
/¸"0)7;

when j¸"6)5 and a/2R"0)1, the P
P
/P

C
"1)002 for x

0
/¸"0)2 and x

0
/¸"0)8, etc.

Figure 3 shows how the power #ow varies over the frequency range when a/2R"0)4, j¸
is the non-dimensional frequency, and P

T
¸2JSo/(M

P
JEI)]10~4 is the non-dimensional

power #ow. In even propagation band, every power #ow curve decreases when j¸ increases.
In odd propagation bands, the power #ow is minimum when x

0
/¸"0)5 at the same j¸, but

it is maximum in even propagation bands.
Figure 4 shows how the power #ow varies over the frequency range when x

0
/¸"0)5. In

the "rst propagation band, the power #ow decreases when a/2R increases, because the
increasing rotation sti!ness caused by the damage makes the mobility at both sides of the
damage point much more unmatchable. So more of incidence wave is re#ected and less is



TABLE 1

¹he transmitted power -ow ratio (a/2R"0)1)

x
0
/¸"0)2 x

0
/¸"0)5 x

0
/¸"0)8

j¸ P
P
/P

C
P
C
/P

B
P
P
/P

C
P
C
/P

B
P
P
/P

C
P
C
/P

B

3)25 1)000 1)000 1)001 1)000 1)000 1)000
3)50 1)000 1)000 1)000 1)000 1)000 1)000
3)75 1)000 1)000 1)000 1)000 1)000 1)000
4)00 1)000 1)000 1)000 1)000 1)000 1)000
4)25 1)000 1)000 1)000 1)000 1)000 1)000
4)50 1)000 1)000 1)001 1)000 1)000 1)000

6)50 1)002 1)000 1)000 1)000 1)002 1)000
6)75 1)001 1)000 1)000 1)000 1)001 1)000
7)00 1)001 1)000 1)000 1)000 1)001 1)000
7)25 1)001 1)000 1)000 1)000 1)001 1)000
7)50 1)001 1)000 1)000 1)000 1)001 1)000
7)75 1)001 1)000 1)000 1)000 1)001 1)000

TABLE 2

As ¹able 1, but (a/2R"0)2)

x
0
/¸"0)3 x

0
/¸"0)5 x

0
/¸"0)7

j¸ P
P
/P

C
P
C
/P

B
P
P
/P

C
P
C
/P

B
P
P
/P

C
P
C
/P

B

3)25 1)020 1)000 1)045 1)000 1)020 1)000
3)50 1)007 1)000 1)016 1)000 1)007 1)000
3)75 1)005 1)000 1)012 1)000 1)005 1)000
4)00 1)004 1)000 1)012 1)000 1)004 1)000
4)25 1)003 1)000 1)015 1)000 1)003 1)000
4)50 1)003 1)000 1)026 1)000 1)003 1)000

6)50 1)080 1)000 1)0006 1)000 1)080 1)000
6)75 1)051 1)000 1)0011 1)000 1)051 1)000
7)00 1)046 1)000 1)0014 1)000 1)046 1)000
7)25 1)051 1)000 1)0015 1)000 1)051 1)000
7)50 1)071 1)000 1)0013 1)000 1)070 1)000
7)75 1)198 1)000 1)0006 1)000 1)198 1)000
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transmitted. In the second propagation band, though the power #ow decreases when a/2R
increases too, there are small di!erences between curves. This is an important property of
damaged beam.

7. CONCLUSIONS

In this report a theoretically sound computational method that can be a basis of damage
diagnosis in periodic beam has been successfully presented based on a non-modal
framework. The damage is modelled as a joint of a local spring. The damage point transfer
matrix and the element transfer matrix are deduced. In the view of structure-borne sound,
vibrational power #ow analysis is investigated for damaged beam structures. Then the



Figure 3. Transmitted power #ow when a/2R"0)4 for damaged beam:*d* x
0
/¸"0)1;*m* 0)3;*r* 0)5;

*j* perfect beam.

Figure 4. Transmitted power #ow when x
0
/¸"0)5 for damaged beam:*j* a/2R"0)2;*d* 0)3;*m* 0)4;

*r* 0)6.
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relations of the vibrational power #ow, the position and the characteristic size of the
damage are obtained combined with periodic structure theory, and some important
remarks are obtained. Based on the above analysis and measurement results, the damage
can be diagnosed by comparing the vibrational power #ow of beam structures with and
without a damage in the next work.
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